Abstract:Curiosity is one of the main motives in many of the natural creatures with measurable levels of intelligence for exploration and, as a result, more efficient learning. It makes it possible for humans and many animals to explore efficiently by searching for being in states that make them surprised with the goal of learning more about what they do not know. As a result, while being curious, they learn better. In the machine learning literature, curiosity is mostly combined with reinforcement learning-based algorithms as an intrinsic reward. This work proposes an algorithm based on the drive of curiosity for autonomous learning to control by generating proper motor speeds from odometry data. The quadcopter controlled by our proposed algorithm can pass through obstacles while controlling the Yaw direction of the quad-copter toward the desired location. To achieve that, we also propose a new curiosity approach based on prediction error. We ran tests using on-policy, off-policy, on-policy plus curiosity, and the proposed algorithm and visualized the effect of curiosity in evolving exploration patterns. Results show the capability of the proposed algorithm to learn optimal policy and maximize reward where other algorithms fail to do so.
Abstract:Artificial intelligence recently had a great advancements caused by the emergence of new processing power and machine learning methods. Having said that, the learning capability of artificial intelligence is still at its infancy comparing to the learning capability of human and many animals. Many of the current artificial intelligence applications can only operate in a very orchestrated, specific environments with an extensive training set that exactly describes the conditions that will occur during execution time. Having that in mind, and considering the several existing machine learning methods this question rises that 'What are some of the best ways for a machine to learn?' Regarding the learning methods of human, Confucius' point of view is that they are by experience, imitation and reflection. This paper tries to explore and discuss regarding these three ways of learning and their implementations in machines by having a look at how they happen in minds.