Abstract:Diabetic Retinopathy (DR) is a serious and common complication of diabetes, caused by prolonged high blood sugar levels that damage the small retinal blood vessels. If left untreated, DR can progress to retinal vein occlusion and stimulate abnormal blood vessel growth, significantly increasing the risk of blindness. Traditional diabetes diagnosis methods often utilize convolutional neural networks (CNNs) to extract visual features from retinal images, followed by classification algorithms such as decision trees and k-nearest neighbors (KNN) for disease detection. However, these approaches face several challenges, including low accuracy and sensitivity, lengthy machine learning (ML) model training due to high data complexity and volume, and the use of limited datasets for testing and evaluation. This study investigates the application of transfer learning (TL) to enhance ML model performance in DR detection. Key improvements include dimensionality reduction, optimized learning rate adjustments, and advanced parameter tuning algorithms, aimed at increasing efficiency and diagnostic accuracy. The proposed model achieved an overall accuracy of 84% on the testing dataset, outperforming prior studies. The highest class-specific accuracy reached 89%, with a maximum sensitivity of 97% and an F1-score of 92%, demonstrating strong performance in identifying DR cases. These findings suggest that TL-based DR screening is a promising approach for early diagnosis, enabling timely interventions to prevent vision loss and improve patient outcomes.
Abstract:Nowadays high security is an important issue for most of the secure places and recent advances increase the needs of high-security systems. Therefore, needs to high security for controlling and permitting the allowable people to enter the high secure places, increases and extends the use of conventional recognition methods. Therefore, a novel identification method using retinal images is proposed in this paper. For this purpose, new mathematical functions are applied on corners and bifurcations. To evaluate the proposed method we use 40 retinal images from the DRIVE database, 20 normal retinal image from STARE database and 140 normal retinal images from local collected database and the accuracy rate is 99.34 percent.