Abstract:Item Response Theory (IRT) models aim to assess latent abilities of $n$ examinees along with latent difficulty characteristics of $m$ test items from categorical data that indicates the quality of their corresponding answers. Classical psychometric assessments are based on a relatively small number of examinees and items, say a class of $200$ students solving an exam comprising $10$ problems. More recent global large scale assessments such as PISA, or internet studies, may lead to significantly increased numbers of participants. Additionally, in the context of Machine Learning where algorithms take the role of examinees and data analysis problems take the role of items, both $n$ and $m$ may become very large, challenging the efficiency and scalability of computations. To learn the latent variables in IRT models from large data, we leverage the similarity of these models to logistic regression, which can be approximated accurately using small weighted subsets called coresets. We develop coresets for their use in alternating IRT training algorithms, facilitating scalable learning from large data.
Abstract:We study a variant of the median problem for a collection of point sets in high dimensions. This generalizes the geometric median as well as the (probabilistic) smallest enclosing ball (pSEB) problems. Our main objective and motivation is to improve the previously best algorithm for the pSEB problem by reducing its exponential dependence on the dimension to linear. This is achieved via a novel combination of sampling techniques for clustering problems in metric spaces with the framework of stochastic subgradient descent. As a result, the algorithm becomes applicable to shape fitting problems in Hilbert spaces of unbounded dimension via kernel functions. We present an exemplary application by extending the support vector data description (SVDD) shape fitting method to the probabilistic case. This is done by simulating the pSEB algorithm implicitly in the feature space induced by the kernel function.