Abstract:A considerable part of the success experienced by Voice-controlled virtual assistants (VVA) is due to the emotional and personalized experience they deliver, with humor being a key component in providing an engaging interaction. In this paper we describe methods used to improve the joke skill of a VVA through personalization. The first method, based on traditional NLP techniques, is robust and scalable. The others combine self-attentional network and multi-task learning to obtain better results, at the cost of added complexity. A significant challenge facing these systems is the lack of explicit user feedback needed to provide labels for the models. Instead, we explore the use of two implicit feedback-based labelling strategies. All models were evaluated on real production data. Online results show that models trained on any of the considered labels outperform a heuristic method, presenting a positive real-world impact on user satisfaction. Offline results suggest that the deep-learning approaches can improve the joke experience with respect to the other considered methods.