Abstract:This article presents a comparative analysis of GPU-parallelized implementations of the quantum-inspired evolutionary optimization (QIEO) approach and one of the well-known classical metaheuristic techniques, the genetic algorithm (GA). The study assesses the performance of both algorithms on highly non-linear, non-convex, and non-separable function optimization problems, viz., Ackley, Rosenbrock, and Rastrigin, that are representative of the complex real-world optimization problems. The performance of these algorithms is checked by varying the population sizes by keeping all other parameters constant and comparing the fitness value it reached along with the number of function evaluations they required for convergence. The results demonstrate that QIEO performs better for these functions than GA, by achieving the target fitness with fewer function evaluations and significantly reducing the total optimization time approximately three times for the Ackley function and four times for the Rosenbrock and Rastrigin functions. Furthermore, QIEO exhibits greater consistency across trials, with a steady convergence rate that leads to a more uniform number of function evaluations, highlighting its reliability in solving challenging optimization problems. The findings indicate that QIEO is a promising alternative to GA for these kind of functions.
Abstract:Causality detection draws plenty of attention in the field of Natural Language Processing and linguistics research. It has essential applications in information retrieval, event prediction, question answering, financial analysis, and market research. In this study, we explore several methods to identify and extract cause-effect pairs in financial documents using transformers. For this purpose, we propose an approach that combines POS tagging with the BIO scheme, which can be integrated with modern transformer models to address this challenge of identifying causality in a given text. Our best methodology achieves an F1-Score of 0.9551, and an Exact Match Score of 0.8777 on the blind test in the FinCausal-2021 Shared Task at the FinCausal 2021 Workshop.