Abstract:This paper presents the analytic modeling of mobile heavy-duty manipulators with actively articulated suspension and its optimal control to maximize its static and dynamic stabilization. By adopting the screw theory formalism, we consider the suspension mechanism as a rigid multibody composed of two closed kinematic chains. This mechanical modeling allows us to compute the spatial inertial parameters of the whole platform as a function of the suspension's linear actuators through the articulated-body inertia method. Our solution enhances the computation accuracy of the wheels' reaction normal forces by providing an exact solution for the center of mass and inertia tensor of the mobile manipulator. Moreover, these inertial parameters and the normal forces are used to define metrics of both static and dynamic stability of the mobile manipulator and formulate a nonlinear programming problem that optimizes such metrics to generate an optimal stability motion that prevents the platform's overturning, such optimal position of the actuator is tracked with a state-feedback hydraulic valve control. We demonstrate our method's efficiency in terms of C++ computational speed, accuracy and performance improvement by simulating a 7 degrees-of-freedom heavy-duty parallel-serial mobile manipulator with four wheels and actively articulated suspension.
Abstract:Electrification, a key strategy in combating climate change, is transforming industries, and off-highway machines (OHM) will be next to transition from combustion engines and hydraulic actuation to sustainable fully electrified machines. Electromechanical linear actuators (EMLAs) offer superior efficiency, safety, and reduced maintenance, and they unlock vast potential for high-performance autonomous operations. However, a key challenge lies in optimizing the kinematic parameters of OHMs' on-board manipulators for EMLA integration to exploit the full capabilities of actuation systems and maximize their performance. This work addresses this challenge by delving into the structural optimization of a prevalent closed kinematic chain configuration commonly employed in OHM manipulators. Our approach aims to retain the manipulator's existing capabilities while reducing its energy expenditure, paving the way for a greener future in industrial automation, one in which sustainable and high-performing robotized OHMs can evolve. The feasibility of our methodology is validated through simulation results obtained on a commercially available parallel-serial heavy-duty manipulator mounted on a battery electric vehicle. The results demonstrate the efficacy of our approach in modifying kinematic parameters to facilitate the replacement of conventional hydraulic actuators with EMLAs, all while minimizing the overall energy consumption of the system.