Abstract:Typically an ontology matching technique is a combination of much different type of matchers operating at various abstraction levels such as structure, semantic, syntax, instance etc. An ontology matching technique which employs matchers at all possible abstraction levels is expected to give, in general, best results in terms of precision, recall and F-measure due to improvement in matching opportunities and if we discount efficiency issues which may improve with better computing resources such as parallel processing. A gold standard ontology matching model is derived from a model classification of ontology matching techniques. A suitable metric is also defined based on gold standard ontology matching model. A review of various ontology matching techniques specified in recent research papers in the area was undertaken to categorize an ontology matching technique as per newly proposed gold standard model and a metric value for the whole group was computed. The results of the above study support proposed gold standard ontology matching model.
Abstract:In this paper we present an extension of existing Nearest-Neighbor heuristics to an algorithm called k-Repetitive-Nearest-Neighbor. The idea is to start with a tour of k nodes and then perform a Nearest-Neighbor search from there on. After doing this for all permutations of k nodes the result gets selected as the shortest tour found. Experimental results show that for 2-RNN the solutions quality remains relatively stable between about 10% to 40% above the optimum.