Abstract:The single-stage approach for fast clothing detection as a modification of a multi-target network, CenterNet, is proposed in this paper. We introduce several powerful post-processing techniques that may be applied to increase the quality of keypoint localization tasks. The semantic keypoint grouping approach and post-processing techniques make it possible to achieve a state-of-the-art accuracy of 0.737 mAP for the bounding box detection task and 0.591 mAP for the landmark detection task on the DeepFashion2 validation dataset. We have also achieved the second place in the DeepFashion2 Challenge 2020 with 0.582 mAP on the test dataset. The proposed approach can also be used on low-power devices with relatively high accuracy without requiring any post-processing techniques.
Abstract:The one-shot approach, DeepMark, for fast clothing detection as a modification of a multi-target network, CenterNet, is proposed in the paper. The state-of-the-art accuracy of 0.723 mAP for bounding box detection task and 0.532 mAP for landmark detection task on the DeepFashion2 Challenge dataset were achieved. The proposed architecture can be used effectively on the low-power devices.