Abstract:The design of induction machine is a challenging task due to different electromagnetic and thermal constraints. Quick estimation of machine's dimensions is important in the sales tool to provide quick quotations to customers based on specific requirements. The key part of this process is to select different design parameters like length, diameter, tooth tip height and winding turns to achieve certain torque, current and temperature of the machine. Electrical machine designers, with their experience know how to alter different machine design parameters to achieve a customer specific operation requirements. We propose a reinforcement learning algorithm to design a customised induction motor. The neural network model is trained off-line by simulating different instances of of electrical machine design game with a reward or penalty function when a good or bad design choice is made. The results demonstrate that the suggested method automates electrical machine design without applying any human engineering knowledge.
Abstract:We propose a novel method for classifying resume data of job applicants into 27 different job categories using convolutional neural networks. Since resume data is costly and hard to obtain due to its sensitive nature, we use domain adaptation. In particular, we train a classifier on a large number of freely available job description snippets and then use it to classify resume data. We empirically verify a reasonable classification performance of our approach despite having only a small amount of labeled resume data available.