Abstract:In this contribution, we define (and test) a pipeline to perform virtual painting recolouring using raw data of X-Ray Fluorescence (XRF) analysis on pictorial artworks. To circumvent the small dataset size, we generate a synthetic dataset, starting from a database of XRF spectra; furthermore, to ensure a better generalisation capacity (and to tackle the issue of in-memory size and inference time), we define a Deep Variational Embedding network to embed the XRF spectra into a lower dimensional, K-Means friendly, metric space. We thus train a set of models to assign coloured images to embedded XRF images. We report here the devised pipeline performances in terms of visual quality metrics, and we close on a discussion on the results.
Abstract:Extended Vision techniques are ubiquitous in physics. However, the data cubes steaming from such analysis often pose a challenge in their interpretation, due to the intrinsic difficulty in discerning the relevant information from the spectra composing the data cube. Furthermore, the huge dimensionality of data cube spectra poses a complex task in its statistical interpretation; nevertheless, this complexity contains a massive amount of statistical information that can be exploited in an unsupervised manner to outline some essential properties of the case study at hand, e.g.~it is possible to obtain an image segmentation via (deep) clustering of data-cube's spectra, performed in a suitably defined low-dimensional embedding space. To tackle this topic, we explore the possibility of applying unsupervised clustering methods in encoded space, i.e. perform deep clustering on the spectral properties of datacube pixels. A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, in charge of mapping spectra into lower dimensional metric spaces, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm. We apply this technique to two different use cases, of different physical origins: a set of Macro mapping X-Ray Fluorescence (MA-XRF) synthetic data on pictorial artworks, and a dataset of simulated astrophysical observations.
Abstract:In this paper we present the first version of ganX -- generate artificially new XRF, a Python library to generate X-ray fluorescence Macro maps (MA-XRF) from a coloured RGB image. To do that, a Monte Carlo method is used, where each MA-XRF pixel signal is sampled out of an XRF signal probability function. Such probability function is computed using a database of couples (pigment characteristic XRF signal, RGB), by a weighted sum of such pigment XRF signal by proximity of the image RGB to the pigment characteristic RGB. The library is released to PyPi and the code is available open source on GitHub.