Abstract:Accurately predicting urban microclimate, including wind speed and temperature, based solely on building geometry requires capturing complex interactions between buildings and airflow, particularly long-range wake effects influenced by directional geometry. Traditional methods relying on computational fluid dynamics (CFD) are prohibitively expensive for large-scale simulations, while data-driven approaches struggle with limited training data and the need to model both local and far-field dependencies. In response, we propose a novel framework that leverages a multi-directional distance feature (MDDF) combined with localized training to achieve effective wind field predictions with minimal CFD data. By reducing the problem's dimensionality, localized training effectively increases the number of training samples, while MDDF encodes the surrounding geometric information to accurately model wake dynamics and flow redirection. Trained on only 24 CFD simulations, our localized Fourier neural operator (Local-FNO) model generates full 3D wind velocity and temperature predictions in under one minute, yielding a 500-fold speedup over conventional CFD methods. With mean absolute errors of 0.3 m/s for wind speed and 0.3 $^{\circ}$C for temperature on unseen urban configurations, our method demonstrates strong generalization capabilities and significant potential for practical urban applications.