Abstract:Diabetic retinopathy (DR) is one of the major complications in diabetic patients' eyes, potentially leading to permanent blindness if not detected timely. This study aims to evaluate the accuracy of artificial intelligence (AI) in diagnosing DR. The method employed is the Synthetic Minority Over-sampling Technique (SMOTE) algorithm, applied to identify DR and its severity stages from fundus images using the public dataset "APTOS 2019 Blindness Detection." Literature was reviewed via ScienceDirect, ResearchGate, Google Scholar, and IEEE Xplore. Classification results using Convolutional Neural Network (CNN) showed the best performance for the binary classes normal (0) and DR (1) with an accuracy of 99.55%, precision of 99.54%, recall of 99.54%, and F1-score of 99.54%. For the multiclass classification No_DR (0), Mild (1), Moderate (2), Severe (3), Proliferate_DR (4), the accuracy was 95.26%, precision 95.26%, recall 95.17%, and F1-score 95.23%. Evaluation using the confusion matrix yielded results of 99.68% for binary classification and 96.65% for multiclass. This study highlights the significant potential in enhancing the accuracy of DR diagnosis compared to traditional human analysis
Abstract:Background: Mild cognitive impairment (MCI) is often considered a precursor to Alzheimer's disease (AD) due to the high rate of progression from MCI to AD. Sensitive neural biomarkers may provide a tool for an accurate MCI diagnosis, enabling earlier and perhaps more effective treatment. Despite the availability of numerous neuroscience techniques, electroencephalography (EEG) is the most popular and frequently used tool among researchers due to its low cost and superior temporal resolution. Objective: We conducted a scoping review of EEG and MCI between 2012 and 2022 to track the progression of research in this field. Methods: In contrast to previous scoping reviews, the data charting was aided by co-occurrence analysis using VOSviewer, while data reporting adopted a Patterns, Advances, Gaps, Evidence of Practice, and Research Recommendations (PAGER) framework to increase the quality of the results. Results: Event-related potentials (ERPs) and EEG, epilepsy, quantitative EEG (QEEG), and EEG-based machine learning were the research themes addressed by 2310 peer-reviewed articles on EEG and MCI. Conclusion: Our review identified the main research themes in EEG and MCI with high-accuracy detection of seizure and MCI performed using ERP/EEG, QEEG and EEG-based machine learning frameworks.