Abstract:We present a new method to create spatial data using a generative adversarial network (GAN). Our contribution uses coarse and widely available geospatial data to create maps of less available features at the finer scale in the built environment, bypassing their traditional acquisition techniques (e.g. satellite imagery or land surveying). In the work, we employ land use data and road networks as input to generate building footprints, and conduct experiments in 9 cities around the world. The method, which we implement in a tool we release openly, enables generating approximate maps of the urban form, and it is generalisable to augment other types of geoinformation, enhancing the completeness and quality of spatial data infrastructure. It may be especially useful in locations missing detailed and high-resolution data and those that are mapped with uncertain or heterogeneous quality, such as much of OpenStreetMap. The quality of the results is influenced by the urban form and scale. In most cases, experiments suggest promising performance as the method tends to truthfully indicate the locations, amount, and shape of buildings. The work has the potential to support several applications, such as energy, climate, and urban morphology studies in areas previously lacking required data.
Abstract:There is a prevailing trend to study urban morphology quantitatively thanks to the growing accessibility to various forms of spatial big data, increasing computing power, and use cases benefiting from such information. The methods developed up to now measure urban morphology with numerical indices describing density, proportion, and mixture, but they do not directly represent morphological features from human's visual and intuitive perspective. We take the first step to bridge the gap by proposing a deep learning-based technique to automatically classify road networks into four classes on a visual basis. The method is implemented by generating an image of the street network (Colored Road Hierarchy Diagram), which we introduce in this paper, and classifying it using a deep convolutional neural network (ResNet-34). The model achieves an overall classification accuracy of 0.875. Nine cities around the world are selected as the study areas and their road networks are acquired from OpenStreetMap. Latent subgroups among the cities are uncovered through a clustering on the percentage of each road network category. In the subsequent part of the paper, we focus on the usability of such classification: the effectiveness of our human perception augmentation is examined by a case study of urban vitality prediction. An advanced tree-based regression model is for the first time designated to establish the relationship between morphological indices and vitality indicators. A positive effect of human perception augmentation is detected in the comparative experiment of baseline model and augmented model. This work expands the toolkit of quantitative urban morphology study with new techniques, supporting further studies in the future.