Abstract:This paper proposes improved methods for the maximum likelihood (ML) estimation of the equivalent number of looks $L$. This parameter has a meaningful interpretation in the context of polarimetric synthetic aperture radar (PolSAR) images. Due to the presence of coherent illumination in their processing, PolSAR systems generate images which present a granular noise called speckle. As a potential solution for reducing such interference, the parameter $L$ controls the signal-noise ratio. Thus, the proposal of efficient estimation methodologies for $L$ has been sought. To that end, we consider firstly that a PolSAR image is well described by the scaled complex Wishart distribution. In recent years, Anfinsen et al. derived and analyzed estimation methods based on the ML and on trace statistical moments for obtaining the parameter $L$ of the unscaled version of such probability law. This paper generalizes that approach. We present the second-order bias expression proposed by Cox and Snell for the ML estimator of this parameter. Moreover, the formula of the profile likelihood modified by Barndorff-Nielsen in terms of $L$ is discussed. Such derivations yield two new ML estimators for the parameter $L$, which are compared to the estimators proposed by Anfinsen et al. The performance of these estimators is assessed by means of Monte Carlo experiments, adopting three statistical measures as comparison criterion: the mean square error, the bias, and the coefficient of variation. Equivalently to the simulation study, an application to actual PolSAR data concludes that the proposed estimators outperform all the others in homogeneous scenarios.
Abstract:Polarimetric synthetic aperture radar (PolSAR) has achieved a prominent position as a remote imaging method. However, PolSAR images are contaminated by speckle noise due to the coherent illumination employed during the data acquisition. This noise provides a granular aspect to the image, making its processing and analysis (such as in edge detection) hard tasks. This paper discusses seven methods for edge detection in multilook PolSAR images. In all methods, the basic idea consists in detecting transition points in the finest possible strip of data which spans two regions. The edge is contoured using the transitions points and a B-spline curve. Four stochastic distances, two differences of entropies, and the maximum likelihood criterion were used under the scaled complex Wishart distribution; the first six stem from the h-phi class of measures. The performance of the discussed detection methods was quantified and analyzed by the computational time and probability of correct edge detection, with respect to the number of looks, the backscatter matrix as a whole, the SPAN, the covariance an the spatial resolution. The detection procedures were applied to three real PolSAR images. Results provide evidence that the methods based on the Bhattacharyya distance and the difference of Shannon entropies outperform the other techniques.
Abstract:The scaled complex Wishart distribution is a widely used model for multilook full polarimetric SAR data whose adequacy has been attested in the literature. Classification, segmentation, and image analysis techniques which depend on this model have been devised, and many of them employ some type of dissimilarity measure. In this paper we derive analytic expressions for four stochastic distances between relaxed scaled complex Wishart distributions in their most general form and in important particular cases. Using these distances, inequalities are obtained which lead to new ways of deriving the Bartlett and revised Wishart distances. The expressiveness of the four analytic distances is assessed with respect to the variation of parameters. Such distances are then used for deriving new tests statistics, which are proved to have asymptotic chi-square distribution. Adopting the test size as a comparison criterion, a sensitivity study is performed by means of Monte Carlo experiments suggesting that the Bhattacharyya statistic outperforms all the others. The power of the tests is also assessed. Applications to actual data illustrate the discrimination and homogeneity identification capabilities of these distances.
Abstract:Images obtained with coherent illumination, as is the case of sonar, ultrasound-B, laser and Synthetic Aperture Radar -- SAR, are affected by speckle noise which reduces the ability to extract information from the data. Specialized techniques are required to deal with such imagery, which has been modeled by the G0 distribution and under which regions with different degrees of roughness and mean brightness can be characterized by two parameters; a third parameter, the number of looks, is related to the overall signal-to-noise ratio. Assessing distances between samples is an important step in image analysis; they provide grounds of the separability and, therefore, of the performance of classification procedures. This work derives and compares eight stochastic distances and assesses the performance of hypothesis tests that employ them and maximum likelihood estimation. We conclude that tests based on the triangular distance have the closest empirical size to the theoretical one, while those based on the arithmetic-geometric distances have the best power. Since the power of tests based on the triangular distance is close to optimum, we conclude that the safest choice is using this distance for hypothesis testing, even when compared with classical distances as Kullback-Leibler and Bhattacharyya.