Abstract:Adversarial attacks pose significant challenges in 3D object recognition, especially in scenarios involving multi-view analysis where objects can be observed from varying angles. This paper introduces View-Invariant Adversarial Perturbations (VIAP), a novel method for crafting robust adversarial examples that remain effective across multiple viewpoints. Unlike traditional methods, VIAP enables targeted attacks capable of manipulating recognition systems to classify objects as specific, pre-determined labels, all while using a single universal perturbation. Leveraging a dataset of 1,210 images across 121 diverse rendered 3D objects, we demonstrate the effectiveness of VIAP in both targeted and untargeted settings. Our untargeted perturbations successfully generate a singular adversarial noise robust to 3D transformations, while targeted attacks achieve exceptional results, with top-1 accuracies exceeding 95% across various epsilon values. These findings highlight VIAPs potential for real-world applications, such as testing the robustness of 3D recognition systems. The proposed method sets a new benchmark for view-invariant adversarial robustness, advancing the field of adversarial machine learning for 3D object recognition.
Abstract:3D Gaussian Splatting has advanced radiance field reconstruction, enabling high-quality view synthesis and fast rendering in 3D modeling. While adversarial attacks on object detection models are well-studied for 2D images, their impact on 3D models remains underexplored. This work introduces the Masked Iterative Fast Gradient Sign Method (M-IFGSM), designed to generate adversarial noise targeting the CLIP vision-language model. M-IFGSM specifically alters the object of interest by focusing perturbations on masked regions, degrading the performance of CLIP's zero-shot object detection capability when applied to 3D models. Using eight objects from the Common Objects 3D (CO3D) dataset, we demonstrate that our method effectively reduces the accuracy and confidence of the model, with adversarial noise being nearly imperceptible to human observers. The top-1 accuracy in original model renders drops from 95.4\% to 12.5\% for train images and from 91.2\% to 35.4\% for test images, with confidence levels reflecting this shift from true classification to misclassification, underscoring the risks of adversarial attacks on 3D models in applications such as autonomous driving, robotics, and surveillance. The significance of this research lies in its potential to expose vulnerabilities in modern 3D vision models, including radiance fields, prompting the development of more robust defenses and security measures in critical real-world applications.
Abstract:This paper presents a novel universal perturbation method for generating robust multi-view adversarial examples in 3D object recognition. Unlike conventional attacks limited to single views, our approach operates on multiple 2D images, offering a practical and scalable solution for enhancing model scalability and robustness. This generalizable method bridges the gap between 2D perturbations and 3D-like attack capabilities, making it suitable for real-world applications. Existing adversarial attacks may become ineffective when images undergo transformations like changes in lighting, camera position, or natural deformations. We address this challenge by crafting a single universal noise perturbation applicable to various object views. Experiments on diverse rendered 3D objects demonstrate the effectiveness of our approach. The universal perturbation successfully identified a single adversarial noise for each given set of 3D object renders from multiple poses and viewpoints. Compared to single-view attacks, our universal attacks lower classification confidence across multiple viewing angles, especially at low noise levels. A sample implementation is made available at https://github.com/memoatwit/UniversalPerturbation.