Abstract:Background: Explainability in phishing detection model can support a further solution of phishing attack mitigation by increasing trust and understanding how phishing can be detected. Objective: The aims of this study to determine and best recommendation to apply an approach which has several components with abilities to fulfil the critical needs Methods: A methodology starting with analyzing both black-box and white-box models to get the pros and cons specifically in phishing detection. The conclusion of the analysis will be validated by experiment using a set of well-known algorithms and public phishing datasets. Experimental metrics covers 3 measurements such as predictive accuracy and explainability metrics. Conclusion: Both models are comparable in terms of interpretability and consistency, with room for improvement in diverse datasets. EBM as an example of white-box model is generally better suited for applications requiring explainability and actionable insights. Finally, each model, white-box and black-box model has positive and negative aspects both for performance metric and for explainable metric. It is important to consider the objective of model usage.
Abstract:Phishing attacks remain a persistent threat to online security, demanding robust detection methods. This study investigates the use of machine learning to identify phishing URLs, emphasizing the crucial role of feature selection and model interpretability for improved performance. Employing Recursive Feature Elimination, the research pinpointed key features like "length_url," "time_domain_activation" and "Page_rank" as strong indicators of phishing attempts. The study evaluated various algorithms, including CatBoost, XGBoost, and Explainable Boosting Machine, assessing their robustness and scalability. XGBoost emerged as highly efficient in terms of runtime, making it well-suited for large datasets. CatBoost, on the other hand, demonstrated resilience by maintaining high accuracy even with reduced features. To enhance transparency and trustworthiness, Explainable AI techniques, such as SHAP, were employed to provide insights into feature importance. The study's findings highlight that effective feature selection and model interpretability can significantly bolster phishing detection systems, paving the way for more efficient and adaptable defenses against evolving cyber threats