Abstract:The increasing cost, energy demand, and environmental issues has led many researchers to find approaches for energy monitoring, and hence energy conservation. The emerging technologies of Internet of Things (IoT) and Machine Learning (ML) deliver techniques that have the potential to efficiently conserve energy and improve the utilization of energy consumption. Smart Home Energy Management Systems (SHEMSs) have the potential to contribute in energy conservation through the application of Demand Response (DR) in the residential sector. In this paper, we propose appliances Operation Modes Identification using Cycles Clustering (OMICC) which is SHEMS fundamental approach that utilizes the sensed residential disaggregated power consumption in supporting DR by providing consumers the opportunity to select lighter appliance operation modes. The cycles of the Single Usage Profile (SUP) of an appliance are extracted and reformed into features in terms of clusters of cycles. These features are then used to identify the operation mode used in every occurrence using K-Nearest Neighbors (KNN). Operation modes identification is considered a basis for many potential smart DR applications within SHEMS towards the consumers or the suppliers
Abstract:In the Smart Grid environment, the advent of intelligent measuring devices facilitates monitoring appliance electricity consumption. This data can be used in applying Demand Response (DR) in residential houses through data analytics, and developing data mining techniques. In this research, we introduce a smart system foundation that is applied to user's disaggregated power consumption data. This system encourages the users to apply DR by changing their behaviour of using heavier operation modes to lighter modes, and by encouraging users to shift their usages to off-peak hours. First, we apply Cross Correlation (XCORR) to detect times of the occurrences when an appliance is being used. We then use The Dynamic Time Warping (DTW) to recognize the operation mode used.