Abstract:Machine learning has emerged as a powerful tool in various fields, including computer vision, natural language processing, and speech recognition. It can unravel hidden patterns within large data sets and reveal unparalleled insights, revolutionizing many industries and disciplines. However, machine and deep learning models lack interpretability and limited domain-specific knowledge, especially in applications such as physics and engineering. Alternatively, physics-informed machine learning (PIML) techniques integrate physics principles into data-driven models. By combining deep learning with domain knowledge, PIML improves the generalization of the model, abidance by the governing physical laws, and interpretability. This paper comprehensively reviews PIML applications related to subsurface energy systems, mainly in the oil and gas industry. The review highlights the successful utilization of PIML for tasks such as seismic applications, reservoir simulation, hydrocarbons production forecasting, and intelligent decision-making in the exploration and production stages. Additionally, it demonstrates PIML's capabilities to revolutionize the oil and gas industry and other emerging areas of interest, such as carbon and hydrogen storage; and geothermal systems by providing more accurate and reliable predictions for resource management and operational efficiency.
Abstract:This thesis explored applications of the new emerging techniques of artificial intelligence and deep learning (neural networks in particular) for predictive maintenance, diagnostics and prognostics. Many neural architectures such as fully-connected, convolutional and recurrent neural networks were developed and tested on public datasets such as NASA C-MAPSS, Case Western Reserve University Bearings and FEMTO Bearings datasets to diagnose equipment health state and/or predict the remaining useful life (RUL) before breakdown. Many data processing and feature extraction procedures were used in combination with deep learning techniques such as dimensionality reduction (Principal Component Analysis) and signal processing (Fourier and Wavelet analyses) in order to create more meaningful and robust features to use as an input for neural networks architectures. This thesis also explored the potential use of these techniques in predictive maintenance within oil rigs for monitoring oilfield critical equipment in order to reduce unpredicted downtime and maintenance costs.