Abstract:This paper introduces GPT-HTree, a framework combining hierarchical clustering, decision trees, and large language models (LLMs) to address this challenge. By leveraging hierarchical clustering to segment individuals based on salient features, resampling techniques to balance class distributions, and decision trees to tailor classification paths within each cluster, GPT-HTree ensures both accuracy and interpretability. LLMs enhance the framework by generating human-readable cluster descriptions, bridging quantitative analysis with actionable insights.
Abstract:Traditional decision tree algorithms are explainable but struggle with non-linear, high-dimensional data, limiting its applicability in complex decision-making. Neural networks excel at capturing complex patterns but sacrifice explainability in the process. In this work, we present GPTree, a novel framework combining explainability of decision trees with the advanced reasoning capabilities of LLMs. GPTree eliminates the need for feature engineering and prompt chaining, requiring only a task-specific prompt and leveraging a tree-based structure to dynamically split samples. We also introduce an expert-in-the-loop feedback mechanism to further enhance performance by enabling human intervention to refine and rebuild decision paths, emphasizing the harmony between human expertise and machine intelligence. Our decision tree achieved a 7.8% precision rate for identifying "unicorn" startups at the inception stage of a startup, surpassing gpt-4o with few-shot learning as well as the best human decision-makers (3.1% to 5.6%).