Abstract:Egocentric segmentation has attracted recent interest in the computer vision community due to their potential in Mixed Reality (MR) applications. While most previous works have been focused on segmenting egocentric human body parts (mainly hands), little attention has been given to egocentric objects. Due to the lack of datasets of pixel-wise annotations of egocentric objects, in this paper we contribute with a semantic-wise labeling of a subset of 2124 images from the RGB-D THU-READ Dataset. We also report benchmarking results using Thundernet, a real-time semantic segmentation network, that could allow future integration with end-to-end MR applications.
Abstract:In this paper we evaluate the suitability of handwriting patterns as potential biomarkers to model Parkinson disease (PD). Although the study of PD is attracting the interest of many researchers around the world, databases to evaluate handwriting patterns are scarce and knowledge about patterns associated to PD is limited and biased to the existing datasets. This paper introduces a database with a total of 935 handwriting tasks collected from 55 PD patients and 94 healthy controls (45 young and 49 old). Three feature sets are extracted from the signals: neuromotor, kinematic, and nonlinear dynamic. Different classifiers are used to discriminate between PD and healthy subjects: support vector machines, knearest neighbors, and a multilayer perceptron. The proposed features and classifiers enable to detect PD with accuracies between 81% and 97%. Additionally, new insights are presented on the utility of the studied features for monitoring and detecting PD.