LISTIC
Abstract:Deep Neural Networks (DNNs) are getting increasing attention to deal with Land Cover Classification (LCC) relying on Satellite Image Time Series (SITS). Though high performances can be achieved, the rationale of a prediction yielded by a DNN often remains unclear. An architecture expressing predictions with respect to input channels is thus proposed in this paper. It relies on convolutional layers and an attention mechanism weighting the importance of each channel in the final classification decision. The correlation between channels is taken into account to set up shared kernels and lower model complexity. Experiments based on a Sentinel-2 SITS show promising results.
Abstract:With the rapid development of Remote Sensing acquisition techniques, there is a need to scale and improve processing tools to cope with the observed increase of both data volume and richness. Among popular techniques in remote sensing, Deep Learning gains increasing interest but depends on the quality of the training data. Therefore, this paper presents recent Deep Learning approaches for fine or coarse land cover semantic segmentation estimation. Various 2D architectures are tested and a new 3D model is introduced in order to jointly process the spatial and spectral dimensions of the data. Such a set of networks enables the comparison of the different spectral fusion schemes. Besides, we also assess the use of a " noisy ground truth " (i.e. outdated and low spatial resolution labels) for training and testing the networks.