Abstract:Despite the vast body of literature on Active Learning (AL), there is no comprehensive and open benchmark allowing for efficient and simple comparison of proposed samplers. Additionally, the variability in experimental settings across the literature makes it difficult to choose a sampling strategy, which is critical due to the one-off nature of AL experiments. To address those limitations, we introduce OpenAL, a flexible and open-source framework to easily run and compare sampling AL strategies on a collection of realistic tasks. The proposed benchmark is augmented with interpretability metrics and statistical analysis methods to understand when and why some samplers outperform others. Last but not least, practitioners can easily extend the benchmark by submitting their own AL samplers.
Abstract:Chemotaxis can be defined as an innate behavioural response by an organism to a directional stimulus, in which bacteria, and other single-cell or multicellular organisms direct their movements according to certain chemicals in their environment. This is important for bacteria to find food (e.g., glucose) by swimming towards the highest concentration of food molecules, or to flee from poisons. Based on self-organized computational approaches and similar stigmergic concepts we derive a novel swarm intelligent algorithm. What strikes from these observations is that both eusocial insects as ant colonies and bacteria have similar natural mechanisms based on stigmergy in order to emerge coherent and sophisticated patterns of global collective behaviour. Keeping in mind the above characteristics we will present a simple model to tackle the collective adaptation of a social swarm based on real ant colony behaviors (SSA algorithm) for tracking extrema in dynamic environments and highly multimodal complex functions described in the well-know De Jong test suite. Later, for the purpose of comparison, a recent model of artificial bacterial foraging (BFOA algorithm) based on similar stigmergic features is described and analyzed. Final results indicate that the SSA collective intelligence is able to cope and quickly adapt to unforeseen situations even when over the same cooperative foraging period, the community is requested to deal with two different and contradictory purposes, while outperforming BFOA in adaptive speed. Results indicate that the present approach deals well in severe Dynamic Optimization problems.