Abstract:This paper presents a comprehensive investigation of existing feature extraction tools for symbolic music and contrasts their performance to determine the set of features that best characterizes the musical style of a given music score. In this regard, we propose a novel feature extraction tool, named musif, and evaluate its efficacy on various repertoires and file formats, including MIDI, MusicXML, and **kern. Musif approximates existing tools such as jSymbolic and music21 in terms of computational efficiency while attempting to enhance the usability for custom feature development. The proposed tool also enhances classification accuracy when combined with other sets of features. We demonstrate the contribution of each set of features and the computational resources they require. Our findings indicate that the optimal tool for feature extraction is a combination of the best features from each tool rather than those of a single one. To facilitate future research in music information retrieval, we release the source code of the tool and benchmarks.
Abstract:In this work, we introduce musif, a Python package that facilitates the automatic extraction of features from symbolic music scores. The package includes the implementation of a large number of features, which have been developed by a team of experts in musicology, music theory, statistics, and computer science. Additionally, the package allows for the easy creation of custom features using commonly available Python libraries. musif is primarily geared towards processing high-quality musicological data encoded in MusicXML format, but also supports other formats commonly used in music information retrieval tasks, including MIDI, MEI, Kern, and others. We provide comprehensive documentation and tutorials to aid in the extension of the framework and to facilitate the introduction of new and inexperienced users to its usage.