Information extraction is the process of automatically extracting structured information from unstructured text data.
Evaluating the strategic reasoning capabilities of Large Language Models (LLMs) requires moving beyond static benchmarks to dynamic, multi-turn interactions. We introduce AIDG (Adversarial Information Deduction Game), a game-theoretic framework that probes the asymmetry between information extraction (active deduction) and information containment (state maintenance) in dialogue. We propose two complementary tasks: AIDG-I, measuring pragmatic strategy in social deduction, and AIDG-II, measuring constraint satisfaction in a structured "20 Questions" setting. Across 439 games with six frontier LLMs, we observe a clear capability asymmetry: models perform substantially better at containment than deduction, with a 350 ELO advantage on defense;(Cohen's d = 5.47). We identify two bottlenecks driving this gap: (1) Information Dynamics, where confirmation strategies are 7.75x more effective than blind deduction (p < 0.00001), and (2) Constraint Adherence, where instruction-following degrades under conversational load, accounting for 41.3% of deductive failures. These findings suggest that while LLMs excel at local defensive coherence, they struggle with the global state tracking required for strategic inquiry.
Zeroth-order (ZO) optimization provides a gradient-free alternative to first-order (FO) methods by estimating gradients via finite differences of function evaluations, and has recently emerged as a memory-efficient paradigm for fine-tuning large-scale models by avoiding backpropagation. However, ZO optimization has a fundamental tension between accuracy and query efficiency. In this work, we show that ZO optimization can be substantially improved by unifying two complementary principles: (i) a projection-based subspace view that reduces gradient estimation variance by exploiting the intrinsic low-rank structure of model updates, and (ii) Muon-style spectral optimization that applies gradient orthogonalization to extract informative spectral structure from noisy ZO gradients. These findings form a unified framework of subspace gradient orthogonalization, which we instantiate in a new method, ZO-Muon, admitting a natural interpretation as a low-rank Muon optimizer in the ZO setting. Extensive experiments on large language models (LLMs) and vision transformers (ViTs) demonstrate that ZO-Muon significantly accelerates convergence and achieves a win-win improvement in accuracy and query/runtime efficiency. Notably, compared to the popular MeZO baseline, ZO-Muon requires only 24.7% of the queries to reach the same SST-2 performance for LLM fine-tuning, and improves accuracy by 25.1% on ViT-B fine-tuning on CIFAR-100.
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, yet early risk detection is often limited by available diagnostics. Carotid ultrasound, a non-invasive and widely accessible modality, encodes rich structural and hemodynamic information that is largely untapped. Here, we present a machine learning (ML) framework that extracts clinically meaningful representations of vascular damage (VD) from carotid ultrasound videos, using hypertension as a weak proxy label. The model learns robust features that are biologically plausible, interpretable, and strongly associated with established cardiovascular risk factors, comorbidities, and laboratory measures. High VD stratifies individuals for myocardial infarction, cardiac death, and all-cause mortality, matching or outperforming conventional risk models such as SCORE2. Explainable AI analyses reveal that the model relies on vessel morphology and perivascular tissue characteristics, uncovering novel functional and anatomical signatures of vascular damage. This work demonstrates that routine carotid ultrasound contains far more prognostic information than previously recognized. Our approach provides a scalable, non-invasive, and cost-effective tool for population-wide cardiovascular risk assessment, enabling earlier and more personalized prevention strategies without reliance on laboratory tests or complex clinical inputs.
Unmanned Aerial Vehicle (UAV)-assisted networks are increasingly foreseen as a promising approach for emergency response, providing rapid, flexible, and resilient communications in environments where terrestrial infrastructure is degraded or unavailable. In such scenarios, voice radio communications remain essential for first responders due to their robustness; however, their unstructured nature prevents direct integration with automated UAV-assisted network management. This paper proposes SIREN, an AI-driven framework that enables voice-driven perception for UAV-assisted networks. By integrating Automatic Speech Recognition (ASR) with Large Language Model (LLM)-based semantic extraction and Natural Language Processing (NLP) validation, SIREN converts emergency voice traffic into structured, machine-readable information, including responding units, location references, emergency severity, and Quality-of-Service (QoS) requirements. SIREN is evaluated using synthetic emergency scenarios with controlled variations in language, speaker count, background noise, and message complexity. The results demonstrate robust transcription and reliable semantic extraction across diverse operating conditions, while highlighting speaker diarization and geographic ambiguity as the main limiting factors. These findings establish the feasibility of voice-driven situational awareness for UAV-assisted networks and show a practical foundation for human-in-the-loop decision support and adaptive network management in emergency response operations.
Driven by our mission of "uplifting the world with memory," this paper explores the design concept of "memory" that is essential for achieving artificial superintelligence (ASI). Rather than proposing novel methods, we focus on several alternative approaches whose potential benefits are widely imaginable, yet have remained largely unexplored. The currently dominant paradigm, which can be termed "extract then store," involves extracting information judged to be useful from experiences and saving only the extracted content. However, this approach inherently risks the loss of information, as some valuable knowledge particularly for different tasks may be discarded in the extraction process. In contrast, we emphasize the "store then on-demand extract" approach, which seeks to retain raw experiences and flexibly apply them to various tasks as needed, thus avoiding such information loss. In addition, we highlight two further approaches: discovering deeper insights from large collections of probabilistic experiences, and improving experience collection efficiency by sharing stored experiences. While these approaches seem intuitively effective, our simple experiments demonstrate that this is indeed the case. Finally, we discuss major challenges that have limited investigation into these promising directions and propose research topics to address them.
Large language models (LLMs) have shown great promise in recommender systems, where supervised fine-tuning (SFT) is commonly used for adaptation. Subsequent studies further introduce preference learning to incorporate negative samples into the training process. However, existing methods rely on sequence-level, offline-generated negatives, making them less discriminative and informative when adapting LLMs to recommendation tasks with large negative item spaces. To address these challenges, we propose ILRec, a novel preference fine-tuning framework for LLM-based recommendation, leveraging self-hard negative signals extracted from intermediate layers to improve preference learning. Specifically, we identify self-hard negative tokens from intermediate layers as fine-grained negative supervision that dynamically reflects the model's preference learning process. To effectively integrate these signals into training, we design a two-stage framework comprising cross-layer preference optimization and cross-layer preference distillation, enabling the model to jointly discriminate informative negatives and enhance the quality of negative signals from intermediate layers. In addition, we introduce a lightweight collaborative filtering model to assign token-level rewards for negative signals, mitigating the risk of over-penalizing false negatives. Extensive experiments on three datasets demonstrate ILRec's effectiveness in enhancing the performance of LLM-based recommender systems.
Modern language models exhibit rich internal structure, yet little is known about how privacy-sensitive behaviors, such as personally identifiable information (PII) leakage, are represented and modulated within their hidden states. We present UniLeak, a mechanistic-interpretability framework that identifies universal activation directions: latent directions in a model's residual stream whose linear addition at inference time consistently increases the likelihood of generating PII across prompts. These model-specific directions generalize across contexts and amplify PII generation probability, with minimal impact on generation quality. UniLeak recovers such directions without access to training data or groundtruth PII, relying only on self-generated text. Across multiple models and datasets, steering along these universal directions substantially increases PII leakage compared to existing prompt-based extraction methods. Our results offer a new perspective on PII leakage: the superposition of a latent signal in the model's representations, enabling both risk amplification and mitigation.
Recent advances in garment pattern generation have shown promising progress. However, existing feed-forward methods struggle with diverse poses and viewpoints, while optimization-based approaches are computationally expensive and difficult to scale. This paper focuses on sewing pattern generation for garment modeling and fabrication applications that demand editable, separable, and simulation-ready garments. We propose DressWild, a novel feed-forward pipeline that reconstructs physics-consistent 2D sewing patterns and the corresponding 3D garments from a single in-the-wild image. Given an input image, our method leverages vision-language models (VLMs) to normalize pose variations at the image level, then extract pose-aware, 3D-informed garment features. These features are fused through a transformer-based encoder and subsequently used to predict sewing pattern parameters, which can be directly applied to physical simulation, texture synthesis, and multi-layer virtual try-on. Extensive experiments demonstrate that our approach robustly recovers diverse sewing patterns and the corresponding 3D garments from in-the-wild images without requiring multi-view inputs or iterative optimization, offering an efficient and scalable solution for realistic garment simulation and animation.
Accurate and timely identification of hospital outbreak clusters is crucial for preventing the spread of infections that have epidemic potential. While assessing pathogen similarity through whole genome sequencing (WGS) is considered the gold standard for outbreak detection, its high cost and lengthy turnaround time preclude routine implementation in clinical laboratories. We explore the utility of two rapid and cost-effective alternatives to WGS, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and antimicrobial resistance (AR) patterns. We develop a machine learning framework that extracts informative representations from MALDI-TOF spectra and AR patterns for outbreak detection and explore their fusion. Through multi-species analyses, we demonstrate that in some cases MALDI-TOF and AR have the potential to reduce reliance on WGS, enabling more accessible and rapid outbreak surveillance.
Digitized historical archives make it possible to study everyday social life on a large scale, but the information extracted directly from text often does not directly allow one to answer the research questions posed by historians or sociologists in a quantitative manner. We address this problem in a large collection of Finnish World War II Karelian evacuee family interviews. Prior work extracted more than 350K mentions of leisure time activities and organizational memberships from these interviews, yielding 71K unique activity and organization names -- far too many to analyze directly. We develop a categorization framework that captures key aspects of participation (the kind of activity/organization, how social it typically is, how regularly it happens, and how physically demanding it is). We annotate a gold-standard set to allow for a reliable evaluation, and then test whether large language models can apply the same schema at scale. Using a simple voting approach across multiple model runs, we find that an open-weight LLM can closely match expert judgments. Finally, we apply the method to label the 350K entities, producing a structured resource for downstream studies of social integration and related outcomes.