This paper focuses on enhancing the captions generated by image-caption generation systems. We propose an approach for improving caption generation systems by choosing the most closely related output to the image rather than the most likely output produced by the model. Our model revises the language generation output beam search from a visual context perspective. We employ a visual semantic measure in a word and sentence level manner to match the proper caption to the related information in the image. The proposed approach can be applied to any caption system as a post-processing based method.