This paper presents a novel information-theoretic proof demonstrating that the human brain as currently understood cannot function as a classical digital computer. Through systematic quantification of distinguishable conscious states and their historical dependencies, we establish that the minimum information required to specify a conscious state exceeds the physical information capacity of the human brain by a significant factor. Our analysis calculates the bit-length requirements for representing consciously distinguishable sensory "stimulus frames" and demonstrates that consciousness exhibits mandatory temporal-historical dependencies that multiply these requirements beyond the brain's storage capabilities. This mathematical approach offers new insights into the fundamental limitations of computational models of consciousness and suggests that non-classical information processing mechanisms may be necessary to account for conscious experience.