The increasing complexity of AI systems has led to the growth of the field of explainable AI (XAI), which aims to provide explanations and justifications for the outputs of AI algorithms. These methods mainly focus on feature importance and identifying changes that can be made to achieve a desired outcome. Researchers have identified desired properties for XAI methods, such as plausibility, sparsity, causality, low run-time, etc. The objective of this study is to conduct a review of existing XAI research and present a classification of XAI methods. The study also aims to connect XAI users with the appropriate method and relate desired properties to current XAI approaches. The outcome of this study will be a clear strategy that outlines how to choose the right XAI method for a particular goal and user and provide a personalized explanation for users.