In the rapidly evolving and maturing field of robotics, computer simulation has become an invaluable tool in the design process. Webots, a state-of-the-art robotics simulator, is often the software of choice for robotics research. Even so, Webots simulations are often run on personal and lab computers. For projects that would benefit from an aggregated output dataset from thousands of simulation runs, there is no standard recourse; this project sets out to mitigate this by developing a formalized parallel pipeline for running sequences of Webots simulations on powerful HPC resources. Such a pipeline would allow researchers to generate massive datasets from their simulations, opening the door for potential machine learning applications and decision tool development. We have developed a pipeline capable of running Webots simulations both headlessly and in GUI-enabled mode over an SSH X11 server, with simulation execution occurring remotely on HPC compute nodes. Additionally, simulations can be run in sequence, with a batch job being distributed across an arbitrary number of computing nodes and each node having multiple instances running in parallel. The implemented distribution and parallelization are extremely effective, with a 100\% simulation completion rate after 12 hours of runs. Overall, this pipeline is very capable and can be used to extend existing projects or serve as a platform for new robotics simulation endeavors.