We present VMap, a map-like rectangular space-filling visualization, to perform vertex-centric graph exploration. Existing visualizations have limited support for quality optimization among rectangular aspect ratios, vertex-edge intersection, and data encoding accuracy. To tackle this problem, VMap integrates three novel components: (1) a desired-aspect-ratio (DAR) rectangular partitioning algorithm, (2) a two-stage rectangle adjustment algorithm, and (3) a simulated annealing based heuristic optimizer. First, to generate a rectangular space-filling layout of an input graph, we subdivide the 2D embedding of the graph into rectangles with optimization of rectangles' aspect ratios toward a desired aspect ratio. Second, to route graph edges between rectangles without vertex-edge occlusion, we devise a two-stage algorithm to adjust a rectangular layout to insert border space between rectangles. Third, to produce and arrange rectangles by considering multiple visual criteria, we design a simulated annealing based heuristic optimization to adjust vertices' 2D embedding to support trade-offs among aspect ratio quality and the encoding accuracy of vertices' weights and adjacency. We evaluated the effectiveness of VMap on both synthetic and application datasets. The resulting rectangular layout has better aspect ratio quality on synthetic data compared with the existing method for the rectangular partitioning of 2D points. On three real-world datasets, VMap achieved better encoding accuracy and attained faster generation speed compared with existing methods on graphs' rectangular layout generation. We further illustrate the usefulness of VMap for vertex-centric graph exploration through three case studies on visualizing social networks, representing academic communities, and displaying geographic information.