Generating a virtual try-on image from in-shop clothing images and a model person's snapshot is a challenging task because the human body and clothes have high flexibility in their shapes. In this paper, we develop a Virtual Try-on Generative Adversarial Network (VITON-GAN), that generates virtual try-on images using images of in-shop clothing and a model person. This method enhances the quality of the generated image when occlusion is present in a model person's image (e.g., arms crossed in front of the clothes) by adding an adversarial mechanism in the training pipeline.