Reconfigurable intelligent surfaces have emerged as a technology with the potential to enhance wireless communication performance for 5G and beyond. However, the technology comes with challenges in areas such as complexity, power consumption, and cost. This paper demonstrates a computer vision-based reconfigurable intelligent surface beamforming algorithm that addresses complexity and cost issues and analyzes the multipath components that arise from the insertion of such a device into the wireless channel. The results show that a reconfigurable intelligent surface can provide an additional multipath component. The power of this additional path can be critical in blockage scenarios, and a capacity increase can be perceived in both line-of-sight and non line-of-sight scenarios.