Terahertz (THz) communication is a promising technology for future wireless communications, offering data rates of up to several terabits-per-second (Tbps). However, the range of THz band communications is often limited by high pathloss and molecular absorption. To overcome these challenges, this paper proposes intelligent reconfigurable surfaces (IRSs) to enhance THz communication systems. Specifically, we introduce an angle-based trigonometric channel model to evaluate the effectiveness of IRS-aided THz networks. Additionally, to maximize the sum rate, we formulate the source-IRS-destination matching problem, which is a mixed-integer nonlinear programming (MINLP) problem. To solve this non-deterministic polynomial-time hard (NP-hard) problem, the paper proposes a Gale-Shapley-based solution that obtains stable matches between sources and IRSs, as well as between destinations and IRSs in the first and second sub-problems, respectively.