For years, Single Image Super Resolution (SISR) has been an interesting and ill-posed problem in computer vision. The traditional super-resolution (SR) imaging approaches involve interpolation, reconstruction, and learning-based methods. Interpolation methods are fast and uncomplicated to compute, but they are not so accurate and reliable. Reconstruction-based methods are better compared with interpolation methods, but they are time-consuming and the quality degrades as the scaling increases. Even though learning-based methods like Markov random chains are far better than all the previous ones, they are unable to match the performance of deep learning models for SISR. This study examines the Residual Dense Networks architecture proposed by Yhang et al. [17] and analyzes the importance of its components. By leveraging hierarchical features from original low-resolution (LR) images, this architecture achieves superior performance, with a network structure comprising four main blocks, including the residual dense block (RDB) as the core. Through investigations of each block and analyses using various loss metrics, the study evaluates the effectiveness of the architecture and compares it to other state-of-the-art models that differ in both architecture and components.