https://github.com/ fidansamet/tune-it-up
Deep generative models have been used in style transfer tasks for images. In this study, we adapt and improve CycleGAN model to perform music style transfer on Jazz and Classic genres. By doing so, we aim to easily generate new songs, cover music to different music genres and reduce the arrangements needed in those processes. We train and use music genre classifier to assess the performance of the transfer models. To that end, we obtain 87.7% accuracy with Multi-layer Perceptron algorithm. To improve our style transfer baseline, we add auxiliary discriminators and triplet loss to our model. According to our experiments, we obtain the best accuracies as 69.4% in Jazz to Classic task and 39.3% in Classic to Jazz task with our developed genre classifier. We also run a subjective experiment and results of it show that the overall performance of our transfer model is good and it manages to conserve melody of inputs on the transferred outputs. Our code is available at