https://github.com/Regan-Zhang/DigPro.
Previous contrastive deep clustering methods mostly focus on instance-level information while overlooking the member relationship within groups/clusters, which may significantly undermine their representation learning and clustering capability. Recently, some group-contrastive methods have been developed, which, however, typically rely on the samples of the entire dataset to obtain pseudo labels and lack the ability to efficiently update the group assignments in a batch-wise manner. To tackle these critical issues, we present a novel end-to-end deep clustering framework with dynamic grouping and prototype aggregation, termed as DigPro. Specifically, the proposed dynamic grouping extends contrastive learning from instance-level to group-level, which is effective and efficient for timely updating groups. Meanwhile, we perform contrastive learning on prototypes in a spherical feature space, termed as prototype aggregation, which aims to maximize the inter-cluster distance. Notably, with an expectation-maximization framework, DigPro simultaneously takes advantage of compact intra-cluster connections, well-separated clusters, and efficient group updating during the self-supervised training. Extensive experiments on six image benchmarks demonstrate the superior performance of our approach over the state-of-the-art. Code is available at