Learning correlations from data forms the foundation of today's machine learning (ML) and artificial intelligence (AI) research. While such an approach enables the automatic discovery of patterned relationships within big data corpora, it is susceptible to failure modes when unintended correlations are captured. This vulnerability has expanded interest in interrogating spuriousness, often critiqued as an impediment to model performance, fairness, and robustness. In this article, we trace deviations from the conventional definition of statistical spuriousness-which denotes a non-causal observation arising from either coincidence or confounding variables-to articulate how ML researchers make sense of spuriousness in practice. Drawing on a broad survey of ML literature, we conceptualize the "multiple dimensions of spuriousness," encompassing: relevance ("Models should only use correlations that are relevant to the task."), generalizability ("Models should only use correlations that generalize to unseen data"), human-likeness ("Models should only use correlations that a human would use to perform the same task"), and harmfulness ("Models should only use correlations that are not harmful"). These dimensions demonstrate that ML spuriousness goes beyond the causal/non-causal dichotomy and that the disparate interpretative paths researchers choose could meaningfully influence the trajectory of ML development. By underscoring how a fundamental problem in ML is contingently negotiated in research contexts, we contribute to ongoing debates about responsible practices in AI development.