We consider the non-convex optimization problem associated with the decomposition of a real symmetric tensor into a sum of rank one terms. Use is made of the rich symmetry structure to derive Puiseux series representations of families of critical points, and so obtain precise analytic estimates on the critical values and the Hessian spectrum. The sharp results make possible an analytic characterization of various geometric obstructions to local optimization methods, revealing in particular a complex array of saddles and local minima which differ by their symmetry, structure and analytic properties. A desirable phenomenon, occurring for all critical points considered, concerns the index of a point, i.e., the number of negative Hessian eigenvalues, increasing with the value of the objective function. Lastly, a Newton polytope argument is used to give a complete enumeration of all critical points of fixed symmetry, and it is shown that contrarily to the set of global minima which remains invariant under different choices of tensor norms, certain families of non-global minima emerge, others disappear.