Soft Constraint Logic Programming is a natural and flexible declarative programming formalism, which allows to model and solve real-life problems involving constraints of different types. In this paper, after providing a slightly more general and elegant presentation of the framework, we show how we can apply it to the e-mobility problem of coordinating electric vehicles in order to overcome both energetic and temporal constraints and so to reduce their running cost. In particular, we focus on the journey optimization sub-problem, considering sequences of trips from a user's appointment to another one. Solutions provide the best alternatives in terms of time and energy consumption, including route sequences and possible charging events.