We introduce a linear dimensionality reduction technique preserving topological features via persistent homology. The method is designed to find linear projection $L$ which preserves the persistent diagram of a point cloud $\mathbb{X}$ via simulated annealing. The projection $L$ induces a set of canonical simplicial maps from the Rips (or \v{C}ech) filtration of $\mathbb{X}$ to that of $L\mathbb{X}$. In addition to the distance between persistent diagrams, the projection induces a map between filtrations, called filtration homomorphism. Using the filtration homomorphism, one can measure the difference between shapes of two filtrations directly comparing simplicial complexes with respect to quasi-isomorphism $\mu_{\operatorname{quasi-iso}}$ or strong homotopy equivalence $\mu_{\operatorname{equiv}}$. These $\mu_{\operatorname{quasi-iso}}$ and $\mu_{\operatorname{equiv}}$ measures how much portion of corresponding simplicial complexes is quasi-isomorphic or homotopy equivalence respectively. We validate the effectiveness of our framework with simple examples.