We study the addition of shape constraints and their consideration during the parameter estimation step of symbolic regression (SR). Shape constraints serve as a means to introduce prior knowledge about the shape of the otherwise unknown model function into SR. Unlike previous works that have explored shape constraints in SR, we propose minimizing shape constraint violations during parameter estimation using gradient-based numerical optimization. We test three algorithm variants to evaluate their performance in identifying three symbolic expressions from a synthetically generated data set. This paper examines two benchmark scenarios: one with varying noise levels and another with reduced amounts of training data. The results indicate that incorporating shape constraints into the expression search is particularly beneficial when data is scarce. Compared to using shape constraints only in the selection process, our approach of minimizing violations during parameter estimation shows a statistically significant benefit in some of our test cases, without being significantly worse in any instance.