In this work, we focus on sampling and recovery of signals over simplicial complexes. In particular, we subsample a simplicial signal of a certain order and focus on recovering multi-order bandlimited simplicial signals of one order higher and one order lower. To do so, we assume that the simplicial signal admits the Helmholtz decomposition that relates simplicial signals of these different orders. Next, we propose an aggregation sampling scheme for simplicial signals based on the Hodge Laplacian matrix and a simple least squares estimator for recovery. We also provide theoretical conditions on the number of aggregations and size of the sampling set required for faithful reconstruction as a function of the bandwidth of simplicial signals to be recovered. Numerical experiments are provided to show the effectiveness of the proposed method.