We delve into the issue of node classification within graphs, specifically reevaluating the concept of neighborhood aggregation, which is a fundamental component in graph neural networks (GNNs). Our analysis reveals conceptual flaws within certain benchmark GNN models when operating under the assumption of edge-independent node labels, a condition commonly observed in benchmark graphs employed for node classification. Approaching neighborhood aggregation from a statistical signal processing perspective, our investigation provides novel insights which may be used to design more efficient GNN models.