In this work, we analyze the behavior of the multivariate symmetric uncertainty (MSU) measure through the use of statistical simulation techniques under various mixes of informative and non-informative randomly generated features. Experiments show how the number of attributes, their cardinalities, and the sample size affect the MSU. In this thesis, through observation of results, it is proposed an heuristic condition that preserves good quality in the MSU under different combinations of these three factors, providing a new useful criterion to help drive the process of dimension reduction. -- En el presente trabajo hemos analizado el comportamiento de una versi\'on multivariada de la incertidumbre sim\'etrica a trav\'es de t\'ecnicas de simulaci\'on estad\'isticas sobre varias combinaciones de atributos informativos y no-informativos generados de forma aleatoria. Los experimentos muestran como el n\'umero de atributos, sus cardinalidades y el tama\~no muestral afectan al MSU como medida. En esta tesis, mediante la observaci\'on de resultados hemos propuesto una condici\'on que preserva una buena calidad en el MSU bajo diferentes combinaciones de los tres factores mencionados, lo cual provee un nuevo y valioso criterio para llevar a cabo el proceso de reducci\'on de dimensionalidad.