The precise definition of causality is currently an open problem in philosophy and statistics. We believe causality should be defined as functions (in mathematics) that map causes to effects. We propose a reductive definition of causality based on Structural Functional Model (SFM). Using delta compression and contrastive forward inference, SFM can produce causal utterances like "X causes Y" and "X is the cause of Y" that match our intuitions. We compile a dataset of causal scenarios and use SFM in all of them. SFM is compatible with but not reducible to probability theory. We also compare SFM with other theories of causation and apply SFM to downstream problems like free will, causal explanation, and mental causation.