Real-time constraint satisfaction for robots can be quite challenging due to the high computational complexity that arises when accounting for the system dynamics and environmental interactions, often requiring simplification in modelling that might not necessarily account for all performance criteria. We instead propose an optimization-free approach where reference trajectories are manipulated to satisfy constraints brought on by ground contact as well as those prescribed for states and inputs. Unintended changes to trajectories especially ones optimized to produce periodic gaits can adversely affect gait stability, however we will show our approach can still guarantee stability of a gait by employing the use of coaxial thrusters that are unique to our robot.