Most recent approaches for 3D object detection predominantly rely on point-view or bird's-eye view representations, with limited exploration of range-view-based methods. The range-view representation suffers from scale variation and surface texture deficiency, both of which pose significant limitations for developing corresponding methods. Notably, the surface texture loss problem has been largely ignored by all existing methods, despite its significant impact on the accuracy of range-view-based 3D object detection. In this study, we propose Redemption from Range-view R-CNN (R2 R-CNN), a novel and accurate approach that comprehensively explores the range-view representation. Our proposed method addresses scale variation through the HD Meta Kernel, which captures range-view geometry information in multiple scales. Additionally, we introduce Feature Points Redemption (FPR) to recover the lost 3D surface texture information from the range view, and Synchronous-Grid RoI Pooling (S-Grid RoI Pooling), a multi-scaled approach with multiple receptive fields for accurate box refinement. Our R2 R-CNN outperforms existing range-view-based methods, achieving state-of-the-art performance on both the KITTI benchmark and the Waymo Open Dataset. Our study highlights the critical importance of addressing the surface texture loss problem for accurate 3D object detection in range-view-based methods. Codes will be made publicly available.