Building upon prior research that highlighted the need for standardizing environments for building control research, and inspired by recently introduced benchmarks for real life reinforcement learning control, here we propose a non-exhaustive nine real world challenges for reinforcement learning building controller. We argue that building control research should be expressed in this framework in addition to providing a standardized environment for repeatability. Advanced controllers such as model predictive control and reinforcement learning control have both advantages and disadvantages that prevent them from being implemented in real world buildings. Comparisons between the two are seldom, and often biased. By focusing on the benchmark problems and challenges, we can investigate the performance of the controllers under a variety of situations and generate a fair comparison. Lastly, we call for a more interdisciplinary effort of the research community to address the real world challenges, and unlock the potentials of advanced building controllers.