A canonical use case of Integrated Sensing and Communications (ISAC) in multiple-input multiple-output (MIMO) systems involves a multi-antenna transmitter communicating with $K$ users and sensing targets in its vicinity. For this setup, precoder and multiple access designs are of utmost importance, as the limited transmit power budget must be efficiently directed towards the desired directions (users and targets) to maximize both communications and sensing performance. This problem has been widely investigated analytically under various design choices, in particular (a) whether or not a dedicated sensing signal is needed, and (b) for different MIMO multiple access techniques, such as Space Division Multiple Access (SDMA) and Rate-Splitting Multiple Access (RSMA). However, a conclusive answer on which design choice achieves the best ISAC performance, backed by experimental results, remains elusive. We address this vacuum by experimentally evaluating and comparing RSMA and SDMA for communicating with two users $(K = 2)$ and sensing (ranging) one target. Over three scenarios that are representative of \emph{vehicular} ISAC, covering different levels of inter-user interference and separation/integration between sensing and communications, we show that RSMA without a dedicated sensing signal achieves better ISAC performance -- i.e., higher sum throughput (upto $50\%$ peak throughput gain) for similar radar SNR (between $20$ to $24{\rm dB}$) -- than SDMA with a dedicated sensing signal. This first-ever experimental study of RSMA ISAC demonstrates the feasibility and the superiority of RSMA for future multi-functional wireless systems.