The multidimensional knapsack problem (MKP) is an NP-hard combinatorial optimization problem whose solution is determining a subset of maximum total profit items that do not violate capacity constraints. Due to its hardness, large-scale MKP instances are usually a target for metaheuristics, a context in which effective feasibility maintenance strategies are crucial. In 1998, Chu and Beasley proposed an effective heuristic repair that is still relevant for recent metaheuristics. However, due to its deterministic nature, the diversity of solutions such heuristic provides is insufficient for long runs. As a result, the search for new solutions ceases after a while. This paper proposes an efficiency-based randomization strategy for the heuristic repair that increases the variability of the repaired solutions without deteriorating quality and improves the overall results.