Since the entry of kernel theory in the field of quantum machine learning, quantum kernel methods (QKMs) have gained increasing attention with regard to both probing promising applications and delivering intriguing research insights. Two common approaches for computing the underlying Gram matrix have emerged: fidelity quantum kernels (FQKs) and projected quantum kernels (PQKs). Benchmarking these methods is crucial to gain robust insights and to understand their practical utility. In this work, we present a comprehensive large-scale study examining QKMs based on FQKs and PQKs across a manifold of design choices. Our investigation encompasses both classification and regression tasks for five dataset families and 64 datasets, systematically comparing the use of FQKs and PQKs quantum support vector machines and kernel ridge regression. This resulted in over 20,000 models that were trained and optimized using a state-of-the-art hyperparameter search to ensure robust and comprehensive insights. We delve into the importance of hyperparameters on model performance scores and support our findings through rigorous correlation analyses. In this, we also closely inspect two data encoding strategies. Moreover, we provide an in-depth analysis addressing the design freedom of PQKs and explore the underlying principles responsible for learning. Our goal is not to identify the best-performing model for a specific task but to uncover the mechanisms that lead to effective QKMs and reveal universal patterns.